

NASA SBIR 2015 Phase I Solicitation

Z5.01 Payload Technologies for Assistive Free-Flyers

Lead Center: ARC

Participating Center(s): JPL, JSC

The objective of this subtopic is to develop technology that can be integrated as external payloads on assistive free-flyers (AFF). AFFs are small free-flying robots that assist humans in exploration, surveillance, inspection, mapping, and other work Current AFFs include space free-flyers, micro UAVs, drones, etc. A key characteristic of AFFs is that they can perform assistive tasks while co-located in human environments. On the International Space Station (ISS), for example, the SPHERES robots have shown how AFF's can perform environment surveys, inspection, and crew support.Â

During 2015-2017, STMD will develop a new AFF as part of the Human Exploration Telerobotics 2 (HET-2) project. This new robot will carry out inventory, sound monitoring, and other routine tasks on the ISS. Proposals are sought to create AFF payloads that can be integrated for application-specific functions, or that can provide general capability enhancements in three areas:

- Sensor Payloads Compact sensors that can be used for environment monitoring, including detection of combustibles, air quality (CO₂ levels), illumination (light spectrum), radiation, etc.
- Logistics Devices Devices that facilitate automated logistics management, particularly inventory scanners (RFID, barcode, etc.) and mechanisms to support tagging/tracking.
- Appendages Mechanisms that can be used for docking/perching, prodding/pushing, etc. This includes deployable structures, universal end-effectors (e.g., jamming granular gripper), and devices incorporating gecko or electrostatic adhesion.Â

Deliverables to NASA:

- · Identify scenarios and use cases.
- · Develop concepts.
- · Construct prototypes.
- Perform technology demos.

Proposals are highly-encouraged that leverage the SPHERES engineering units and HET-2 free-flyers at the NASA Ames Research Center. Phase II efforts should deliver documentation and sufficient units to support future research/testing on ISS. Â